



Git & GitHub



Git is a version control system that lets you 
manage and keep track of your source code 

history. GitHub is a cloud-based hosting service 
that lets you manage Git repositories. If you have 
open-source projects that use Git, then GitHub is 
designed to help you better manage them. 

Basic GIT Commands


Here are some basic GIT commands you need to know:


$ git init


	 •	 git init will create a new local GIT repository. The 
following Git command will create a repository in the 
current directory:


$ git init [project name]

	 


•	 Alternatively, you can create a repository within a new 
directory by specifying the project name:




	 


$ git clone username@host:/path/to/repository


•	 git clone is used to copy a repository. If the repository 
lies on a remote server, use:


	 •	 Conversely, run the following basic command to 
copy a local repository:


$ git clone /path/to/repository


	 •	 git add is used to add files to the staging area. For 
example, the basic Git following command will index the 
temp.txt file:


$ git add <temp.txt>




	 •	 git commit will create a snapshot of the changes 
and save it to the git directory.


$ git commit –m “Message to go with the commit here”

	 

•	 Note that any committed changes won’t make their 
way to the remote repository. 

	 •	 git config can be used to set user-specific 
configuration values like email, username, file format, and 
so on. To illustrate, the command for setting up an email will 
look like this:


$ git config --global user.email youremail@example.com

	 


•	 The –global flag tells GIT that you’re going to use that 
email for all local repositories. If you want to use different 
emails for different repositories, use the command below:


$ git config --local user.email youremail@example.com

	 




•	 git status displays the list of changed files together 
with the files that are yet to be staged or committed.


$ git status

	 


•	 git push is used to send local commits to the master 
branch of the remote repository. Here’s the basic code 
structure:


$ git push origin <master>

	 


•	 Replace <master> with the branch where you want to 
push your changes when you’re not intending to push to the 
master branch. 

	 •	 git checkout creates branches and helps you to 
navigate between them. For example, the following basic 
command creates a new branch and automatically switches 
you to it:




$ git checkout -b <branch-name>

	 

•	 To switch from one branch to another, simply use:


$ git checkout <branch-name>

	 

•	 git remote lets you view all remote repositories. The 
following command will list all connections along with their 
URLs:


$ git remote –v

	 

•	 To connect the local repository to a remote server, use 
the command below:


$ git remote add origin <host-or-remoteURL>

	 

•	 Meanwhile, the following command will delete a 
connection to a specified remote repository:


$ git remote rm <name-of-the-repository>

	 




•	 git branch will list, create, or delete branches. For 
instance, if you want to list all the branches present in the 
repository, the command should look like this:


$ git branch

	 

•	 If you want to delete a branch, use:


$ git branch –d <branch-name>

	 

•	 git pull merges all the changes present in the remote 
repository to the local working directory.


$ git pull


•	 git merge is used to merge a branch into the active one.


$ git merge <branch-name>

	 



	Basic GIT Commands

